NMR of Terminal Oxygen. Part 11.[†] ¹⁷O NMR Spectra of Disilyl ketone and Related Compounds: A Case of Strong Deshielding by Electronic Excitation Energy

Hans Dahn,*,* Péter Péchy‡,* and Hans Jürgen Bestmann^b

^a Institut de Chimie Organique, Université de Lausanne, rue de la Barre 2, CH-1005 Lausanne, Switzerland

^b Institut für Organische Chemie der Universität Erlangen-Nürnberg, Henkestr. 42, D-8520, Erlangen, Germany

The important deshielding effect on the ¹⁷O signal of the disilyl ketone **1** ($\Delta\delta$ ca. 400 ppm, compared with normal ketones such as **3**) and of the monosilylketones **2**, is proportional to the λ values of the UV–VIS absorption spectra; in agreement with the *r*-term of the Karplus–Pople eqn. (1), it is four times larger than the analogous effect on the ¹³C signals of the carbonyl carbon.

¹⁷O NMR shift values have been found useful to classify the electrophilicity (bond order) of carbonyl compounds; ¹ this is in contrast to ¹³C NMR shift data, which are often the result of compensating factors, not all of which are well understood. When the carbonyl of –COX is bound to an electron-donating second-row element (X = NR₂, OR, F), the resulting bond resonance diminishes the π -bond order, increases the electron density around O and increases the ¹⁷O NMR shielding. For instance in the absence of resonance (X = Me), PhCOMe shows $\delta_0 = 549$, whereas for the resonance-stabilized carbonyl groups in PhCO₂Me $\delta_0 = 337$, PhCONH₂ $\delta_0 = 326$ and PhCO₂⁻ $\delta_0 = 265$.²

In special cases, however, influences other than bond order have to be considered for the δ_0 values of carbonyl compounds.³ The chemical shifts of nuclei higher than H are approximated by the Karplus-Pople eqn. (1),⁴ where σ^p represents the

$$\sigma^{\mathbf{p}} = -\operatorname{const.} \times \Delta E^{-1} \times r^{-3} \times \Sigma Q \qquad (1)$$

(paramagnetic) shielding; ΔE is the electronic excitation energy, empirically approximated by the longest-wave (symmetryforbidden) absorption in the UV-VIS spectrum, r is the radius of the p orbital around the atom measured, and ΣQ the charge density-bond order matrix, approximated by the π -bond order at the measured atom. Eqn. (1) shows why molecules with π bonds are particularly deshielded, in ¹³C as in ¹⁷O NMR.

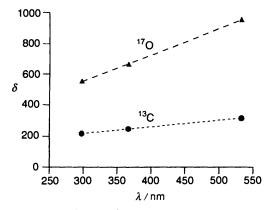
For carbonyl groups, deshielding influences, via ΔE , become important when CO is conjugated with a third-row (or higher) element, particularly X = Si or P: from the colourless di-tertbutyl ketone Me₃CCOCMe₃ 3, to the yellow pivaloylsilane Me₃CCOSiMe₃ 2, the magnetically active, symmetry-forbidden UV band (type n $\longrightarrow \pi^*$) passes from 298 to 367 nm;⁵ in the red bis(trimethylsilyl) ketone Me₃SiCOSiMe₃ 1⁶ the red-shift in the UV-VIS spectrum is particularly strong: $\lambda_{max} = 533$ nm; it has been analysed by different experimental methods and by calculation.⁶ The reduction of the excitation energy is due to an important destabilization of the HOMO and a simultaneous lesser stabilization of the LUMO.^{5,7} At the same time the ¹³C shift values rise from 218 for 3 to 249 for 2 to 318 ppm for 1. Barbarella and Bongini⁸ have demonstrated that this low-field shift of the ¹³C signals is essentially due to changes in the ΔE term¹⁰ and not to changes in the bond order-charge density

Table 1 ¹⁷O and ¹³C NMR chemical shift values and UV–VIS absorptions (n $\longrightarrow \pi^*$) of trimethylsilyl ketones

Compound	δ₀"	δ_{c}^{b}	λ/nm
Me ₃ Si-CO-SiMe ₃ 1	956.4°	318.29	5336
Me ₃ Si-CO-CMe ₃ 2	666.5°	249.0 ⁹	367 ⁸
Me ₃ Si-CO-Ph	681 ¹²	236.710	424 ⁵
Me ₃ C-CO-CMe ₃ 3	555.2°	218.0 ⁸	298 ⁸
Me ₃ C-CO-Ph	563 ³	209.1 9	320 ⁵

^a Chemical shifts were measured at natural abundance in *ca.* 0.5 mol dm⁻³ acetonitrile solution at 40 °C, on a Bruker WH 360 spectrometer operating at 48.8 MHz; $\delta_0(H_2O) = 0.0$; for spectral acquisition parameters see Ref. 3. ^b In CHCl₃ or CDCl₃. ^c This work.

term.⁹ As ¹⁷O shift values provide a much better indicator of the bonding state of the carbonyl group than ¹³C, we have measured (or remeasured) δ_0 for 1, 2, and 3, in order to establish whether a correlation between λ_{max} and δ_0 exists.


As the results show (Table 1), the δ_0 value of 3 is found at 555 ppm, close to that of other acyclic ketones, e.g. acetone 571 ppm.² The acylsilane 2 shows $\delta_0 = 666$,¹¹ similar to the values of p-XC₆H₄COSiMe₃ (632 to 706 ppm, depending upon X; for X = H: $\delta_0 = 681^{12}$); the deshielding $\Delta \delta_0$ is ca. 110 ppm. The disilylketone 1 is still much more deshielded: $\delta_0 = 956$, *i.e.* 400 ppm downfield from ordinary ketones R_2CO . This is by far the most deshielded of all C-bound oxygen atoms measured until now. The shift difference from 2 to 1, nearly 300 ppm, much larger than that from 3 to 2, corresponds to the red-shift in the UV-VIS spectra: a plot of δ_0 over λ is linear, with a slope 1.63 of the correlation line. Applying eqn. (1), one can estimate that the ΔE term alone would induce *ca.* 550 ppm deshielding of 1 compared with 3. This is slightly more than the 401 ppm found, but close enough to identify ΔE as the preponderant term for these compounds; the difference might be attributed to compensating influences of the other terms of eqn. (1), which are neglected in our crude estimation.

For the ¹³C signals of 1, 2 and 3 Barbarella and Bongini⁸ had found a linear correlation of $\delta_{\rm C}$ with λ , with a slope 0.41, much smaller than the value of 1.63 found for $\delta_{\rm O}/\lambda$; *i.e.* $\delta_{\rm C}$ is much less sensitive to variations of structure than $\delta_{\rm O}$. The same is true if one compares the benzoyl compounds PhCOSiMe₃ and PhCOCMe₃ (Table 1): in ¹⁷O the shift difference is 118 ppm, in ¹³C only 27 ppm.

For compounds 1, 2 and 3, the ratio of the δ/λ slopes of ¹⁷O and ¹³C, which is the slope δ_O/δ_C of a correlation line of δ_O with δ_C , is 4.0. This is a significant figure: eqn. (1) is applicable to ¹³C

[†] Part 10, H. Dahn and P. Péchy, J. Chem. Soc., Perkin Trans. 2, 1993, 67.

[‡] On leave of absence from the Technical University, Budapest.

Fig. 1 Plot of the ¹⁷O and ¹³C shift values of ketones 1, 2 and 3 vs. λ_{max} of the $n \longrightarrow \pi^*$ absorption band

as to ¹⁷O NMR; for δ_{O} and δ_{C} of the same compound, the ΔE -term must be identical; furthermore, changes in the bond-order term ΣQ might be negligible, at least in a first approximation. Then δ_{O}/δ_{C} represents $(r_{O}^{-3})/(r_{C}^{-3})$ derived from eqn. (1), that is the ratio of the mean inverse cubes of the radii of the 2p orbitals on O and C respectively.¹³ The result of 4.0 is in reasonable agreement with the expected value for $(r_{O}^{-3})/(r_{C}^{-3}) = 3.5$, taken from optical spectroscopy.¹⁴ In the case of δ_{C} values MNDO calculations of 1, 2 and 3 had supported the preponderance of the ΔE term; ⁸ as δ_{O} and δ_{C} are firmly correlated, the electronic excitation term must be predominant for δ_{O} too.

Acknowledgements

This work was supported by the Swiss National Science Foundation and the Stiftung Volkswagenwerk.

References

- 1 H. Dahn, P. Péchy and V. V. Toan, Angew. Chem., Int. Ed. Engl., 1990, 29, 647.
- 2 D. W. Boykin, ¹⁷O NMR Spectroscopy in Organic Chemistry, CRC Press, Boca Raton FL, 1991.
- 3 H. Dahn and P. Péchy, J. Chem. Soc., Perkin Trans. 2, 1991, 1721; H. Dahn and P. Péchy, J. Chem. Soc., Perkin Trans. 2, 1993, 67.
- 4 M. Karplus and J. A. Pople, J. Chem. Phys., 1963, 38, 2803.
- 5 K. Yates, S. L. Klemenko and I. G. Csizmadia, Spectrochim. Acta, Part A, 1969, 25, 765.
- 6 A. Ricci, M. Fiorenza, A. Degl'Innocenti, G. Seconi, P. Dembech, K. Witzgall and H. J. Bestmann, *Angew. Chem., Int. Ed. Engl.*, 1985, 24, 1068; H. J. Bestmann, W. Haas, K. Witzgall, H. Bock, A. Ricci, M. Fiorenza, A. Degl'Innocenti, G. Seconi and P. Dembech, manuscript in preparation.
- 7 H. Bock, H. Alt and H. Seidl, J. Am. Chem. Soc., 1969, 91, 355; B. G. Ramsay, A. Brook, A. R. Bassindale and H. Bock, J. Organomet. Chem., 1974, 74, C41.
- 8 G. Barbarella, A. Bongini and S. Rossini, J. Org. Chem., 1988, 53, 5140; G. Barbarella and A. Bongini, *Tetrahedron*, 1989, 45, 5137.
- 9 F. Bernardi, L. Lunazzi, A. Ricci, G. Seconi and G. Tonachini, Tetrahedron, 1986, 42, 3607.
- 10 E. M. Dexheimer, G. R. Buell and C. Le Croix, Spectrosc. Lett., 1978, 11, 751.
- 11 See also S. Chimichi and S. Mealli, J. Mol. Struct., 1992, 271, 133.
- 12 H. Dahn, P. Péchy and V. V. Toan, Magn. Reson. Chem., 1990, 28, 883.
- 13 J. Mason, J. Chem. Soc., Faraday Trans. 2, 1979, 75, 607.
- 14 R. G. Barnes and W. V. Smith, Phys. Rev., 1954, 93, 95.

Paper 3/02904B Received 20th May 1993 Accepted 20th May 1993